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The dynamics of reentry is studied in a one-dimensional loop of model cardiac cells with discrete intercel-
lular gap junction resistance �R�. Each cell is represented by a continuous cable with ionic current given by a
modified Beeler-Reuter formulation. For R below a limiting value, propagation is found to change from
period-1 to quasiperiodic �QP� at a critical loop length �Lcrit� that decreases with R. Quasiperiodic reentry
exists from Lcrit to a minimum length �Lmin�, which also shortens with R. The decrease of Lcrit�R� is not a
simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the
duration of the action potential as a function of the diastolic interval. However, the shape of the restitution
curve changes with R. An increase of R does not seem to increase the number of possible QP solutions since,
as in the continuous cable, only two QP modes of propagation were found despite an extensive search through
alternative initial conditions.
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I. INTRODUCTION

Self-sustained propagation of electrical activity around a
one-dimensional �1D� loop of cardiac tissue is the simplest
model of reentry, the mechanism by which a propagating
activation front maintains itself by traveling around a func-
tional or anatomical obstacle. Reentry has been much studied
because it was demonstrated to be an important mechanism
of cardiac arrhythmia �1–4�. For the 1D loop, most work has
been done assuming the membrane to be a continuous and
uniform cable with constant intracellular axial resistivity
�5–15�. For different models representing the ionic properties
of the membrane, propagation was found to change from
stable period-1 propagation to quasiperiodic reentry when
the length of the loop was reduced below a critical length.
The quasiperiodic reentry was characterized by a spatial os-
cillation of the action potential duration as propagation pro-
ceeded around the loop. Based on numerical simulations, the
bifurcation was in most cases classified as supercritical, with
the amplitude of the oscillation growing as the length of the
loop was reduced below the critical length. Quasiperiodic
reentry was found to exist from the critical length to a mini-
mal length below which sustained propagation became im-
possible. In some instances, two different modes of quasip-
eriodic propagations were identified, with different
wavelengths, different intervals of existence, and sometimes
different scenarios of creation �6–10�. Various attempts were
made to build simplified representations of the dynamics al-
lowing analytical examination of the nature of the bifurca-
tion �7,10,11,16–18�. One of these approaches, which guides
the present investigation, relies on an integral-delay model
�9,10�. It is based on the assumption that both the speed of
propagation and the action potential duration can be ex-
pressed as functions of the diastolic interval, which measures

the recovery time from the end of the previous action poten-
tial. The model has been successful in reproducing the locus
of the bifurcation observed by numerical simulations of 1D
loops with Beeler-Reuter-type representations of the mem-
brane. It predicts that the bifurcation should occur when the
diastolic interval in the period-1 reentry reaches the critical
value where the slope of the restitution curve becomes 1.

However, cardiac excitable tissue is not a syncytium, but
rather a mesh of myocytes connected by discrete gap junc-
tion resistances �19�. Much work has been done to investi-
gate the effect of discrete resistances in a one-dimensional
structure �14,20–24�, many focused on the effect of resistiv-
ity on excitability. In the discrete case, the resistance no
longer acts as a scaling factor with regard to space. Because
the intercellular current is reduced as the gap junction resis-
tance is increased, the latency of the cell-to-cell propagation
is augmented until propagation fails at some limiting value
of the resistance. Besides, upon premature or repetitive
stimulations, the excitability of the tissue must be more re-
covered for propagation to proceed, which corresponds to an
increase of the refractory period. Discrete coupling has also
been to shown to act on the dynamics of propagation during
reentry and pacing by modifying the repolarization, thereby
changing the duration of the action potentials �25–27�.

This paper describes how the bifurcation from period-1 to
quasiperiodic propagation and the characteristics of the qua-
siperiodic �QP� propagation are modified by the increase of
the intercellular resistance in a 1D loop of discrete model
cardiac cells. This paper is organized as follows. In Sec. II,
the model and computational method are described. The re-
sults of the numerical simulation are presented in Sec. III.
The bifurcation from stable period-1 reentry is explained in
Sec. IV. The QP modes of reentry are analyzed in Sec. V. The
final section is devoted to a summary and discussion.

II. METHODS

We consider a one-dimensional loop formed by N identi-
cal cells connected by gap junction resistances. Each cell is
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modeled as a continuous and uniform cable of radius �a�
5 �m, length �Lc� 100 �m, and intracellular resistivity ���
0.2 k� cm lying in an unbounded volume conductor of neg-
ligible resistivity. The transmembrane potential �Vi=1,N in
mV� of the cells is described by the well-known cable equa-
tion

1

�

�2Vi�x,t�
�x2 = S�Cm

�Vi�x,t�
�t

+ Iion
i �x,t�� ,

x � �0,Lc�, i � �1,N� , �1�

in which Cm is the membrane capacitance �1 �F/cm2�, S is
the surface-to-volume ratio �0.4 �m−1�, and Iion is the ionic
current ��F/cm2�. The membrane ionic model is the same
modified Beeler-Reuter �MBR� model that was used in our
previous works on continuous 1D and 2D rings �6–8,28,29�.
In this model, the sodium current is controlled by an activa-
tion gate variable m and two inactivation gate variables h and
j. The plateau and repolarization of the action potential in-
volve a gate-controlled calcium current as well as a gate-
controlled and a voltage-dependent potassium current. Each
cell is connected to its neighbors by a discrete gap junction
resistance R �k��. Continuity of the intracellular current be-
tween the cells yields the boundary conditions �20�

	 �Vi

�x
	

x=Lc

= 	 �Vmod�i,N�+1

�x
	

x=0
= −

�

�a2 Ii,mod�i,N�+1,

Vi�Lc� − Vmod�i,N�+1�0� = RIi,mod�i,N�+1. �2�

For simulation, we have modified the numerical method that
we developed for continuous loops �6�. Briefly, for each time
step ��t=2 �s�, Eq. �1� becomes equivalent to an ordinary
differential equation

d2Vi�x�
dx2 − K2Vi�x� = gi�x� , �3�

whose solution can be expressed as the sum of a particular
solution Vp

i �x� and of the homogeneous solution

Vh
i �x� = Aie

kx + Bie
−kx. �4�

Vp
i �x� is obtained by solving Eq. �3� with Neumann

boundary conditions �
�Vi /�x
x=0,Lc
=0� using a Galerkin

finite-element method projected onto a linear basis function
�13� with a uniform grid ��x=25 �m�—i.e., five nodes.
Cells are then reconnected by choosing the coefficients of the
homogeneous solutions to fulfill the continuity conditions
given by Eq. �2�. For a subset of R values, calculations re-
peated with �x=12.5 �m and �t=1 �s gave the same re-
sults.

The purpose of the simulations is to obtain a description
of the regimes of reentry of the function R and L=NLc, the
length of the loop. During reentry, the successive action po-
tentials �s=1, l� at each node can be characterized by their
activation times �Tact

s �, set at the maximum derivative of the
upstroke, and their repolarization times �Trepol

s �, taken at the
−50-mV down-crossing in repolarization. The action poten-
tial duration �A� and the diastolic interval �D� associated

with each action potential are calculated, respectively, as As

=Trepol
s −Tact

s and Ds=Tact
s −Trepol

s−1 �5–8�. The propagation of
the wave front along the loop generates spatial profiles of A
and D that typify the reentry. In contrast to a continuous
loop, propagation on a discrete loop can be patterned inside
each cell, but identical across all the cells. We have chosen to
use only A and D values of the middle node of all cells to
characterize the reentries. We label period-1 �P1� reentries in
which A and D remain constant across all the middle nodes
and QP reentries where A and D oscillate both in time and
space. The label “quasiperiodic” was used by analogy with
the results of the analysis of integral-delay model done by
Courtemanche et al. �9,10�, but no further processing was
done to clarify the exact nature of these nonconstant solu-
tions.

For each value of R, an initial L was chosen large enough
to sustain P1 stable reentry. Reentry was initiated by tran-
siently opening the loop and stimulating one end. Computa-
tion was continued until stable period-1 reentry was detected,
the stability criteria being less than 0.5 ms difference in A
and D between all middle nodes for one rotation of the front.
Afterward, the loop length was gradually reduced by steps of
one cell, using the final state of the previous L as initial
condition and removing one cell far from the position of the
excitation front. When the stability criterion was not fulfilled
after a minimum of 25 turns, reentry was labeled as QP. With
this procedure, both Lcrit and Pcrit—respectively, the mini-
mum length and minimum period with P1 reentry—as well
as Lmin—the minimum length for sustained reentry—were
identified for each value of R. In some instances, bistability
between P1 and QP reentry was investigated by stepwise
expanding loops that were initially in the quasiperiodic re-
gime. One cell was inserted in the loop, with initial condi-
tions set at the mean of the states of its neighboring cells.
Finally, we also searched for distinct modes of QP reentry
using the method described in �7�, in which the D spatial
profile of a QP solution for a given L value is compressed by
a scaling factor to construct initial conditions to find alterna-
tive QP solutions with smaller wavelengths.

III. RESULTS

Figure 1�a� shows Lcrit and Lmin as a function of R. Both
Lcrit and Lmin decrease until they merge at R�104 k�. From
this resistance, QP reentry does not exist anymore and P1
reentry remains the only regime of sustained propagation.
From there, the limiting length for P1 reentry increases until
sustained propagation becomes impossible at R
�108.429 k�. Increasing the resistivity in a continuous
loop would also decrease Lcrit and Lmin. However, the speed
of propagation being proportional to 1/�� in a continuous
media �30�, ��Lcrit��� and ��Lmin��� would remain invariant.
To compare the continuous and discrete medium, we com-
puted the equivalent resistivity of the latter as

�eqv�R� = � +
NR�a2

L
= � +

R�a2

Lc
. �5�

With this notation, R=0 corresponds to a continuous loop
with resistivity �. If the two media were equivalent, the ratio
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L�R���eqv�R� /L�R=0��� would remain equal to 1. Figure
1�b� shows clearly that the diminution of Lcrit and Lmin can-
not be explained by a simple scaling, as it occurs in a con-
tinuous medium.

IV. Lcrit AND Pcrit IN TRANSITION TO QP REENTRY

Two distinct scenarios can lead to the disappearance of
P1 reentry. For 108.429 k��R�104 k�, sustained reen-
try does not exist for L�Lcrit=Lmin, so that reentry ends
abruptly with the disappearance of the P1 solution. For R
�104 k�, P1 reentry is replaced by QP reentry, which per-
sists from Lcrit to Lmin. In this section, we consider the sec-
ond type of transition. In the continuous MBR loop, the bi-
furcation from P1 to QP propagation occurs at the critical
period Pcrit=Dcrit+Acrit where Dcrit and Acrit are the values
for which the slope of the restitution curve A�D� reaches 1
�6,9�. Pcrit is constant and independent of � in a continuous
medium. In contrast, Fig. 2�a� shows that Pcrit increases with
R in the discrete loop. Both Acrit and Dcrit contribute to the
change of Pcrit �Fig. 2�b��, but the increase of Dcrit is more
important. For each value of R, we collected the D and A
values of the P1 solutions for a set of L values close to Lcrit
as well as those of the first QP solution below Lcrit to con-
struct the A�D� restitution curve. Each curve was fitted with
a simple exponential to find Dcrit,th�R�, the value where the
slope of the fitted A�D�=1, and the theoretical value Pcrit,th

=Dcrit,th+A�Dcrit,th�. As shown in Fig. 2�a�, Pcrit,th falls very
close to the Pcrit values found by simulation. Hence, the
mechanism responsible for the transition from P1 to QP re-
entry is the same in the continuous and discrete loops, and
the increase of Pcrit results from R transforming the restitu-
tion curve. The mechanisms responsible for the change of D
and A can be identified in Fig. 3, which shows the action
potentials of the first node in the three successive cells for
increasing values of R. �top to bottom, R=0, 80, and

103 k��. Increasing R prolongs the latency of the action
potential, defined as the time interval between the minimum
diastolic potential and the beginning of the action potential,
set at the maximum derivative in the upstroke �left column
panels�. Since latency is included in the diastolic interval, its
increase translates as an increase of D.

The mechanisms responsible for the change of Acrit and of
the form of the restitution curve are complex and involve an
interaction between the diffusive current and the gate vari-
ables, as it has been demonstrated in previous works �25,27�.
Neighboring cells exchange current during the early phase of
repolarization, which compensates for the delay of activation
and tends to prolong the action potential. If the time course
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of the gate variables of the calcium and potassium currents
controlling the action potential duration was not concurrently
altered during the subthreshold and early repolarization
phase, Acrit�R� would always be longer than Acont(Dcrit�R�),
the duration of the action potential produced by an activation
with D=Dcrit�R� on a continuous loop. As illustrated in Fig.
2�b�, Acrit�R� is always smaller that Acont(Dcrit�R�), which
shows that the net effect of the diffusion current goes beyond
a simple passive prolongation of the action potential.

Once Pcrit is known, Lcrit can be calculated if the speed of
propagation, 	�Dcrit�, is provided. In discrete media, the total
time to propagate from one cell to another is a composite of
the propagation time within and between the cells. The
former decreases with R, while the latter, which is equivalent
to the latency displayed in Fig. 3, increases. The final com-
posite 	(Dcrit�R�) is shown in left panel of Fig. 4. In a con-
tinuous medium, 	o�D���=c�D�, where c�D� is constant
characterizing each value of D and 	o�D� refers to the speed
of a period-1 solution with diastolic interval D. Hence,
	norm(Dcrit�R�)=	(Dcrit�R�)��eqv�R� /	0(Dcrit�R�)�� would
remain equal to 1 if R was acting on the speed only as a
scaling factor, which is not the case as shown in the right
panel of Fig. 4.

V. QP REENTRY

The characteristics of the QP reentry in the continuous
MBR loop have been extensively discussed in previous pa-
pers �5–7�. Two modes of QP were identified, characterized
by D and A oscillations with different spatial wavelengths
�
�. The first mode, referred to as mode 0, exists from Lcrit to
Lmin. Its 
, close to two turns of the loop at Lcrit, diminishes
as the loop is shortened, but always remains longer than L. It
appears through a supercritical bifurcation, in which the am-

plitude of D and A oscillation grows from zero as L is de-
creased below Lcrit. The second, referred as mode 1, exists
only over a subset of the �Lmin,Lcrit� interval with 
 always
less than L. The mode-1 solution is created by a subcritical
bifurcation at L�Lcrit. These two types of QP solutions were
found for all values of R�104 k� where QP solutions exist.

A. Mode-0 QP reentry

We first consider the mode-0 solutions that exist over the
whole �Lmin,Lcrit� interval. Figure 5 presents the characteris-
tics of the mode-0 solutions at Lmin for two values of R �top
panels, R=3 k�, L=7.65 cm, bottom R=103 k�, L
=1.04 cm�. The leftmost panels show the spatial oscillation
of D by plotting successive turns end to end. Similar mode-0
solutions were obtained for all L� �Lmin�R� ,Lcrit�R��, char-
acterized by stable D spatial profiles repeating with a wave-
length 
�L. These solutions can be either periodic or qua-
siperiodic, depending whether 
 is a rational or irrational
fraction of L. Since 
 decreases gradually as L is reduced, we
chose to refer to them collectively as mode-0 quasiperiodic
solutions.

Mode 0 solutions were also found to appear through a
supercritical bifurcation with, as shown in Fig. 6, a gradual
increases of the amplitude below Lcrit. For these two cases,
the nature of the bifurcation was further ascertained by pro-
longing the calculation up to 100 turns for L values close to
Lcrit and by enlarging the loop starting from L�Lcrit in the
mode-0 QP regime.

An obvious difference between the left-column panels of
Fig. 5 and between those of Fig. 6 is the range of D values
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covered by the solutions for different R. The left panel of
Fig. 7 shows Dmin and Dmax, the minimum and maximum
values of D for the mode-0 solutions at Lmin�R�. It is well
known that, in a discrete medium, the minimum excitability
needed to sustain propagation increases as a function of R
until a limiting value beyond which propagation is blocked
even in a medium at rest �22�. In the MBR model, the excit-
ability can be measured by the product hj of the inactivation
gates of the sodium current. The right panel of Fig. 7 shows
hj�Dmin� and hj�Dmax�, the excitability of the action poten-
tials produced, respectively, at Dmin and Dmax for the mode-0
solutions at Lmin. As R increases, the minimal excitability
allowing propagation becomes higher, which requires an in-
crease of Dmin�R�. At R=104 k�, hj�Dmin�=hj�Dcrit�, QP

propagation disappears and only P1 reentry remains. On the
other hand, the curve hj�Dmax� rather reflects the inactivation
of the sodium current occurring during the latency preceding
the upstroke of the longer action potential. At R=104 k�,
the limit for QP propagation, hj�Dmax��hj�Dmin�=hj�Dcrit�,
which indicates that P1 propagation is still possible if R is
increased. However, the difference is small, such that the
range of R values over which P1 reentry can still occur is
limited, as is seen in Fig. 1.

The middle column panels of in Fig. 5 display the A�D�
relation obtained from each QP mode-0 solution. Each curve
has two branches, the lower and upper branches coming,
respectively, from the increasing and decreasing portions of
the D spatial profile. Such a dual structure has been observed
in the continuous loop and was explained either by the influ-
ence of neighbors on the repolarization �18� or by short-term
memory �15�. The separation between the branches is en-
hanced by the increase of R. Finally, the right column panels
of Fig. 5 show 1/	 vs D, the dispersion relation of the con-
duction time. For R=3 k� �top right panel�, the dispersion
relation appears as a single-value function, similar to what is
seen in the MBR continuous loop. For R=103 k� �bottom
right panel�, the dispersion relation has two branches, as the
A�D� curve. The lower branch is associated with the decreas-
ing portion of the D spatial profile.

B. Higher QP modes

Figure 8 shows an example of mode-0 and mode-1 solu-
tions for R=50 k� and L=1.8 cm, in the middle of the
�Lmin,Lcrit�= �1.61 cm,1.99 cm� interval for this value of R.
Mode-1 solutions were found for all values of R with QP
propagation over a subset of the �Lmin,Lcrit� interval, as in
the case of the continuous cable. Courtemanche et al. �10� in
their analysis of a delay-integral model representing reentry
on a 1D loop have predicted the existence of an infinite num-
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ber of QP modes, with spatial wavelengths near Lcrit given
by


�n� =
2L

2n + 1
−

C

�2n + 1�3 , �6�

where n is the order of the mode and C is a small positive
constant. As seen Fig. 8, 
�0� /
�1� is indeed close to 3.
However, in the MBR continuous loop, only the first two
modes �i.e., 0 and 1� were observed. This was explained by
the effect of resistive coupling between neighbors that limits
the spatial gradient of voltage and forbids the appearance of
higher modes �7�. Theoretically,


�2�

�0�

�
1

5
,


�2�

�1�

�
3

5
. �7�

To look for mode-2 solutions for different R and L values,
we have compressed the D profiles of the mode-0 and
mode-1 solutions up to, respectively, a factor of 6 and 2 to
build different initial conditions. This procedure was suc-
cessful in obtaining mode-1 solutions from mode-0 solu-
tions, but higher modes of propagation were never produced.
For all scaling factors, propagation was found to stabilize
either to mode 0 or mode 1. It is noteworthy that mode-1
solutions always appeared at L�Lcrit with high-amplitude
complex oscillations that damped as L was reduced, until
reaching smooth patterns as the one shown in Fig. 8.

VI. DISCUSSION AND SUMMARY

Increasing R in the discrete loop allows sustained reentry
to be maintained in much shorter circuits than in continuous
loops with equivalent lumped resistance. The critical period
at which the bifurcation from period-1 to QP propagation
occurs can still be predicted from the A�D� dispersion curve
constructed by gathering data from P1 solutions and from
mode-0 QP solutions close to supercritical bifurcation. How-
ever, increasing R modifies A�D� and the value of Pcrit. On
the one hand, the latency of the cell-to-cell propagation is
augmented due to the decrease of the intercellular current.
This prolongs D, which includes the latency and pushes
A�D� to the right. The partial closure of the sodium current
inactivation gates, which occurs during slow depolarization,
increases the voltage threshold and also contributes to the
prolongation of D. In space-clamped models, changing the
amplitude �25� or the duration of square pulse stimuli �31�
modifies the A�D� restitution curve. Hence, the change of the
subthreshold depolarization coming with higher R impacts
on the restitution curve, together with the diffusion current in
the early repolarization phase that influences the time course
of the membrane voltage and of the gate variables. The in-
crease of Pcrit and the change of A�D� are in line with the
results of Qu �25� who found, using a Luo-Rudy-1 paced
cable with nodes linked by discrete resistances, that reducing
the coupling displaced the onset of alternans toward higher
stimulation periods.

The shift of Pcrit depends on both the change of Dcrit and
A�Dcrit�. In order to analyze these effects, it would be more
appropriate to separate the latency from the diastolic interval,
redefining D from the end of the action potential to the mini-
mum of V in repolarization and considering the latency lat to
extend from the end of D to the maximum derivative of the
upstroke �32�. Then both A and lat could be analyzed as
functions of D and R. However, even with this change, it will
be difficult to build a low-dimensional equivalent model of
the propagation, extending the integral-delay model devel-
oped for the continuous loop. As seen in Fig. 5, increasing R
enhances the dual structure of A�D� during propagation.
Moreover, a similar type of dual structure also appears for
1 /	, which is almost equivalent to the latency at high R
values. It thus becomes impossible to neglect the modulating
effect of coupling on both A and 	 at high R values. Whether
alternative approaches that have been proposed for the con-
tinuous loop would be more appropriate remains to be deter-
mined �11,16,17�. In any case, we are still far from a general
low-dimensional model that could also be applied in situa-
tions including a dynamic change of the intercellular cou-
pling, as in �33–35�.

R also influences Lmin, the minimal length with QP propa-
gation. Because higher R necessitates more excitability for
propagation, the minimum D in sustained QP reentry in-
creases until it reaches Dcrit�R�. From this value of R, QP
propagation becomes impossible. For R above this limiting
value, period-1 reentry ends abruptly when its D reaches the
minimal value allowing propagation. The minimal L for
propagation increases until R reaches the value where propa-
gation becomes impossible even in a medium at rest. Again,
it would be very interesting to study reentry in a medium
with dynamical modulation of the gap resistance.

In all cases with QP propagation, we found the bifurcation
from period-1 to mode-0 propagation to be supercritical. For
some R values, the nature of the bifurcation was further as-
certained by prolonging the simulation up to 100 rotations
and by expanding the loop from a length with QP propaga-
tion. It cannot be excluded that the bifurcation was misclas-
sified at least for some values of R because of prolonged
slow growing transients. A numerical analysis of an integral-
delay model of reentry has shown that increasing the slope of
the A�D� function could turn the bifurcation from super to
subcritical �7�. Since Qu �25� has reported that reduced cou-
pling increases the slope of A�D� at least at short D values
and since Fig. 5 also shows that it increases the steepness of
the restitution relation, the increase of R was expected to
change the bifurcation. However, the nature of the bifurca-
tion, which is determined by the response of the system to
small perturbations around the period-1 solution, is con-
trolled by the variation of the slope close to Dcrit. In our case
where the A�D� functions were constructed from stable solu-
tions close to Lcrit�R�, we observed a minimal increase of the
steepness of the function around Dcrit for all values of R.
This may explain why the bifurcation has remained super-
critical, and it does not exclude the possibility that it could
be different for other ionic models.
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As in the continuous case, mode-1 solutions were found
to exist in a subset on the �Lmin,Lcrit� interval. We also de-
voted much effort to finding n�1 modes of QP propagation
for different values of R, building initial conditions either
from mode-0 or mode-1 solutions for different L within the
�Lmin,Lcrit� interval. All these attempts were unsuccessful.
Our initial guess was that the increase of R should allow
more abrupt gradients of potential to exist between the cells,

thus permitting the existence of higher modes of propaga-
tion. However, as seen in Fig. 5, the dual structure of the
A�D� and 1/	 relations becomes more pronounced at high R.
This suggests that coupling still limits the gradient below
what would be needed for higher modes of propagation.
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